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In this paper the solution is given for the problem of equilibrium of a thick plate when
the plane faces are unloaded and tractions are specified on the cylindrical part of the
boundary, the tractions being symmeturic with respect to the middle plane, The behavier
of the solution is studied for small values of the thickness parameter of the plate A,

It is shown that the state of stress within the plate is described by a certain biharmonic
function for which the boundary conditions coincide with the Kolosov-Muskhelishvili
conditions only to the first approximation, On the boundary the additional state of stress

contains terms of the same order in A as the solution uf the two-dimensional problern
hat is, the two-dimensional problem does not give the rrue state of stress on the hound-

ary even for a plate of very small thickness,

1, We shall examine a plate of thickness 2/ made of an isotropic, homogeneous mate-
rial, The boundary of tlie body is formed by two plane regions 'y and the cylindrical
surface 'y (Fig. 1), The plane faces are considered to
be free of load, This assumption is not vital, inasmuch
as these tractions can always be removed by solution
of the corresponding problem for an infinite layer
l //“/ ~~ isee,e, g, Lur'e [1 and 2], We shall study the case in

- ! )’ which the cylindrical part of the plate boundary is
&= - S
™ . ¥ loaded by a self equilibrating system of tractions which
0 are symmetrical with respect to the middle surface,
Z This, along with the results of Aksentian and Vorovich
5 [3], allows us to obtain the strain distribution in a plate
in the general case,
Fig, 1

We shall proceed from the three-dimensional Navier
equations, It can be proved that in this case the state
of stress in the plate is composed of three states, which are called states of biharmonic,
potential, and curl type [2], Using the results of [1], we obtain the state of stress of bi~
harmonic type in the form
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Tx(zl) — ‘IT'U(") — Csz(l.) =0 (1 2)
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where @ is a characteristic linear plan dimension of the plate, ¢ is a dimensionless co-
ordinate, O is Poisson's ratio, and ¢ (2) and ¥ (2) are analytic functions of the complex

variable 2= + L[/
The state of stress of potential type can be found comparatively simply by seeking it

in the form

w—a @A, =a@ I, W =8 4

After substitution of these expressions into the system of Navier equations, we may
separate variables if 4 satisfies tiie relation

A 022 + A | dy* — 84 [ K =0 (1.3)

From the same procedure we find the function Q& ( ¢ ) and B(§ ) up to multiplicative
constants, From the condition of homogeneity, i. e. , from the fact that the plane faces
are unloaded, we obtain the equation for the determination of the constant 4]

28 +sin26=0 (1.4)

This has a countable set of complex roots, and to each root &, there corresponds a

function 4, from (1. 3).
Introducing the dimensionless coordinates € and 1}, we can represent tiie sotution of

potential type in the form
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where =
o () = (s—m—f-"— —vcos bk) cos 8, — vl sin 8, sin §,¢ (1.6)

Bx (8) = [(1 + v) sin &, + vd, cos 8,] sin 8, L — v&,L sin 8, cosd,L
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Pi (§) = 8y sin 6, cos §,
Tk (§) = Oy (c0s 8 sin 6, — L sin § cos §,L)

5 (6) = 8,° [(E%kél + cos 6,,) cos §,L + ¢ sin 8, sin 6k§n

The summation is carried out over the roots §,, having positive real part, since the
roots with negative real part provide the same solution, in view of the fact that  §,
occurs as a square in Eq, (1, 3),

We seek the state of stress of curl type in the form

u® = g (2) oF ]y, v® = — g (L)OF [ oz, w® =0

Arguing as before, we find

[¢ o] 00
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p=1 N Pp==1
o0
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The functions F, satisty the same relations as the 4,

0°F, | 08 + 3*F, [ 0 —p,°Fy | M =0, p,=pn (p=1,2,3,..)

These solutions were obtained in a different way in [2],

2. The problem of determination of the state of stress in a plate which has been
formulated will be solved if the boundary conditions for the functions ¢ (2), ¢ (2), Aps
F, are determined in accordance with the ractions specified on [ In order to do
this we shall use the principle of virtual work. We introduce a system of local dimen-
sionless coordinates [ 3] related to the contour of the plate in plan, 8,73 G (Fig, 2).

We shall consider that at each point of the svrface [3
the system of tractions M§.8), I(C. 8), 4G . 9 er
the system X0 (3, 8), Y0 (5, 8 Za° (L, 9), is
specified, These two systems are, of course, each-ex -
pressible in terms of the other, The displacement com-
ponents in the system of axes 72, Sare u, and ' u,. We
shall seek the state of deformation of the plate in the,
Fig, 2. form g = u® 4+ u® + u®, v = v + @& +
4o, w=w® +w® +w® (2.1)

Then considering that the stresses of (2, 1) are exact solutions of the Navier equations

of the theory of elasticity, the virtual work equation may be taken in the form [4]

I [(X,® + X,® + X,@)6u® 4 (Y,0 + Y,@ + ¥,@) §z® +
I
1 (Zy® + Z,® + Z,®)wW + X, 08 (u® + u®) + Y,W8 (v +
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+ o) + Z,08 @ + w0) + (0,0 + 06,®) 8 Un® + Un®) + (T +
1) (0O + 1®) + (1 + T8 (0 +w)ldo = If X000 +

+ Y% + Z,%wldo (2.2)

In order to use this equation, it is necessary to transform to stresses and displacements
in the local coordinates 72 and S, We obtain
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w® L wd = B @) 4 (H=1+4ap) (2.4)
k=1
where 7 is the radius of curvature of the contour of the plate in plan,

In accordance with the well-known formulas, we can obtain from these equations

X, = o l—1m, Y, =0m+ 1,1, Z, where £ and m

are direction cosines,
The displacements u(®, »®, u® and »®), which occur in Eq, (2, 2) can be written
in local coordinates by using the expressions
u =u,l — ugm. V= um -+ u,l
For the solution of biharmonic type, we have (2.5)

X0 4 i¥P = — i (b 29 + B — M 2 ()i -7, ZP =0

We write the values of the tractions X, () and Y, (1) on the boundary in the form
Xo® = Ryz(@: ) + MRy (), Yol = Ry (9, 9) + MUR,y (9)  (2.6)
Here R,., R,., Ry, and Ry, are operators the meaning of which becomes clear
from examination of Eq, (2, 5).
We introduce further the operators .S, and Sy, which are defined as follows: let
ay (s) be the boundary values of the function 4, '(s, n), -which satisfies (1, 3), Then

84 a4, |
Suax = A,-%L I" Soxaxr = A2 an’k . (2.7)

'nzs
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Analogously we have

’ fp = FP (S, n) iI‘ (28)

5F PRF
. p = AP
lepfpz}\z"a—r‘;‘rr Sﬂpfp‘“";“ an? r

For the stresses and displacements on the boundary in the solutions of potential and
curl type, we obtain

£X8 = L1 Z P+ 3 (€) Smay | —

)
— mké o (T) ( Sy — A %a;,.’)
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10,® = é atye (£) Syxttss u® = ,‘2 oy (T) (1S1xay — Amay)
u,® =h§ o (8) ai’y 0@ = g o () (mSwag + May) w® = é By (€) ax
X ® =y E cosp.{ [ mSspf, + ( %—) Sipf, —

—r {2ty =, )]
Y‘”-v?cospp[ lS:pf+(2m +i5 )Smfp-"
p=1
Y-

a (3) a (3)
wrln® = Tl = VpBI p, sin o Lf,’

25,0 =2y 2 cos 0% (»g—s Ssof, — 7“*%‘?{)
p=

Tl =V 5_‘, cos pL ( Szpfp + -%Sl?fp + K‘fp”)

P = (2.10)
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u,® = 2v, 2 cos pp;fp’, u® = 2v Z cos ppC, (Mf ! + mS1pf,)

p=1 p=1
u®=—2v D cosp tSif, v =2v N cosp(hmf —ISy,f,)
=1 p=1
wd=0

In order to make use of the variational relation (2, 2), the variations in the solution of
biharmonic type must be expressed in terms of any two independent ones, The state of
stress of biharmonic type is described by the fuctions ¢(2) and¥(2) and would be com-
pletely determined if the displacements & and D corresponding to the given solution of
this type were known on the contour, It is, therefore natural to express the variations of
all quantities related to this solution in terms of the variations 0% and OV on the contour.
For -Sw@ for instance, we have

Sw®) = A (K 6ut) 4 K,6v(0) (2.11)
where A3 and A3 are certain integro-differential operators defined by the two-dimension-
al problem of the theory of elasticity in terms of displacements. As other independent
variations we shall take the variations of the boundary values of 4, and F,.

Varying only the boundary value of ¥, we obtain from Eq, (2, 2)

< 1
2Ru: (9, ) + 5 MRue (9) + 2 ) Jia[I - (Swar — 84%a) —
r=1

—m (_;’_ Sty — h—%ak’)] + 2k, (2 TraSuty + M Z 0 sty ) =

k=1
= 2<X,°> + 2MKy*<Z,°%) (2.12)

Here and in what follows angle brackets denote mean values of quantities, Varying
U on the boundary, we find the analogous relations

2 (0, ) + -2 MRy () + 2 3 Tn|m - (Suar— day) +

k=1

+ l(% Sy — A 7';.. ak’)] + Eaﬁsz‘( Z JiaSay + M Z ppJpafP’) =
k=1 p=1

where = 2¢Y,% + 2AK*<Z,°) (2.13)
1 1 1
o= p@at=—87 (U @d=Ju (isnpga=7s
-1 -1 -1
1 1 1 1

Ve @t =Ju, Scosptat=0, 4§ X000 = (x5, 1 { ¥o0zg = (¥,

-1 -1 -1 =1
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Here K3 *and A5* are the operators which are adjoint to £ and A5, We recall that
an operator X, is related to its adjoint X ® by the following identity valid for any funct-
ions /3 (8) and S5 (S) a the contour

bty (Kt (9ds = s (VKA1 (5) ds
Varying the boundary value of Aj, we obtain the infinite system

Tms | SimlRex (9, 9) + b - (mBos (0, )] +
+ A | SilRoe (9) + b M (@) ] + T [S:mmﬂw (@ 9) —
~h g (Buy @, W)+ A [ Sty (9) — b2 (1R ()] +

+ 25+ 2 (1) ens G-+ TnS2ca4) 29 3Ty (&Suts—h g 1’ )|—
p=1
—‘?g‘i[}" 2 kae(“""thak—"x—“ak ) +

o o
v 2 Toms (= Saoly + hgr Ssofp + 12,7 )|+ 20 [ B TemoSura +

=t k=1
+prfmfp] 7»——?’ mtZy, m=123_.) (2.14)
where S,:-;s adjoint to the operator Sy, and )
§ £ (8) 0T = Ty Si Pe (8) & (§) 4G = Jimsy 51 Noty, (§) % = Ny,
- e =

1

1 1
{ e @ am @ = Timer | ot (@) 08050 =Tomis  § Ton ()AL= T'm,
—

—1 —1

1 1 1
1 @B @ = Tima B (©)Sinp,EA = Tomo, § 2B (8 dE = Zim
-1 —1 —1

Finally, by varying the boundary value of the function Fp, we have

— Ay - IRz (@) + By () + MTsoSy® (m B (@) — LRy (@) —

—‘—"““ 2 {(v—1) Ty + JxrSmear] + (t=1,23,..0 (2.15)
k=1

+-2£Su' Z it (iSmak— 7\"“— a )— E&V[——:*Su'«?ztfz +

dN m
+ Syu* “‘-Sltft+23-"5'lift ( " f ) + ASa*fi ] == — A—t ' — Su*T,



The state of stress in a thick plate 2598

where

1 1 !
} oospldi="Tus  § pe®)cospkdl="Jim. | cospsl cospldl =0
—1 —1 findt

cosz ptdt =1

| !'/a,_.

1 1
\ Neospgat=n, § Teosprat=T,
= -1

Thus a complete system of equations has beer obtained whxcn determines the solution
of the problem in its entirety, Eq, (2,15) serves to determine the f, for £=1,2,3,... .
All the ay,are found from the system (2, 14), Finally, Egs. (2.12) and (2. 13 provide the
boundary conditions for the functions {(Z) and Y(2). If, however, the function f, and
ay, are eliminated from (2, 12) and (2, 13) with the aid of (2.15) and (2. 14), then we dir-
ectly obtain the boundary conditions for the functions 2 and ¥ ot the solution of binar-
monic type,

3, The construction of the operators S,, and S, can be carried out effectively for
small values of the parameter A by using asymptotic expansions of the functions A,
and Fp, having the following form

@1)
1 348, at .
Ay (s, n)={a,,(s)—-—-§ﬁnak+ %, [4&* nia,— —hna,,-—-7ma.]+
» R 2R*— RR" 4 %,
+ zék [— s enta + bt (sra — e +a TR ) +

An 22 2R 2R — RR" + a? §n
+ 55 25, ( T4t a —a pre “*)]Jr“'}“pT

Analogous representations can also be written out for F, (s, B). As a point moves
into the interior of the region (as 72~ °°) the solution decays exponentially. The op-
erators Sy and Sy introduced earlier are then given by the relations

a i at & 1 @ d: R d
Su=8—gpr— ¥ (m+m) tus ¥ T e
2R*— RR" 2
- AR +a‘)+--- (3.2)
Sae =02 —-% (e & a LA
S = — - dh + (g — o7 +ame M (G i) - B3

The corresponding adjoint operator is

¢ ’._..‘.l.. _._1‘ a? a2
Six = 8" — g5 A 2ak"'(7ri+aff)+

i d? R d 2R — RR" 2
tama (T e et )+ @4

We shall seek the solution in the form

() = ag + Aapy + Aayy -+ ..., @ (2) = qp + Agy + Alpy + ... 3.5)
To () = fpo + Moy + Mfoa + s D (2) = o + Ay + A%y +...
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assurning that the wactions specified on the contour are also representable in series form
[3]

N=?&N1 +K2N2 + tvey TZ;LTI +;\‘2T2 + saey Z :}&2Z2 ._é-\a:
Xo® = AXps® + MXp® + o, V0 = AV + R2Y,° + o, 2,0 = A2,

Using these expansions, we now collect terms having the same power of A in Egs,
(2.12) to (2,15), For all the functions which have been introduced, we thus obtain the
boundary data for each approximation in powers of A separately, For the lowest power
of A,i,e,, in the zeroth approximation

(3.6)
2Ry (Poy Yo) — = 2 iy ("*‘ lago + mako) +w ks‘ Jxa®yaye = 0
k=1 =1
2Ryy (Poy Po) — _;:Z Ji1dy (——— My — lam) —§—v~—— Ko* ::21 Jxadpaxo = 0
== =
o (3.7)
Ea.&- (v — 1) Sxmsio + Om Jxmedxak0 + ¥ ikmsBkarol = 0 (3.8)
K=1
%&thzfm =0 (3.9)

It is immediately apparent from this that f,, = 0. The system (3, 8) is such that
@y = 0. Then we obtain from (3, 6) and (3, 7) that @, = P, = 0.

For the next higher power of A, we have in the first approxirnation (3.10)

2Ry ((Ph Pr) —— 2 Jm“ﬁk (— lay, + makx) +V—- K* Z sza}cakl = (X"
k=1

2Ry, (g1, ¥1) — = 2 Ty (- mt — L) +v 22 Ky* 3] byt = X5
k=1

(3.11)

%& Z [V = 1)8m Jxmsar1 +Om Jumedi2aiy + vgmsdpam] = 0 (3.12)

k=1
—%‘?‘ 'thzfn fe O (3.13)

It is clear from this that f = a4, = 0. From (3.10) and (3, 11) we obtain the
boundary conditions for @, (z) and ¥, (z):

d — Sy s
== @1+ 201" + 1) = i (X + 1 {TV 1)) (3.14)
which coincides exactly with the Kolosov-Muskhelishvili boundary condition for ¢ (z)

and ¢ (z) in the two-dimensional theory of elasticity.
In the second approximation we obtain

L (a5 ) = (K> +E (Vi) + (3.15)
By 3,
k=1
, 2 sin? é
-+ ‘2,1& (1 —v) ({ + mi) 2 Oy — ’25‘2’\7 E sx‘nk X (iKi* — Ko*) axe
Ke=1 k=1

(m=1, 2,...)
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o 8,%5,% (sin? 8, —sin* §,) » . N 5
—4v kg’[ (6m2_6k2) (6111__5"() [(v“—l)(éh +§m )+ —‘(v+1) akaml axe
kstm . 5
sin
+ 2v%9,,° (-fz;“ sin® 3, — 1) Amg = — —2‘":1" '13”—1"*1_31'“ (p1— 1+ 201’ — 2¢’+

-+ {p‘l — 1) + mzli::» {¢: +—(b1 +”2:(p1' -+ z"(En' -+ ’l_]h -+ ‘lp;)J — _2; 8N (316)
In this approximation

T
fra= "‘?;%“p,% (t=1,2,3..) (3.17)

The matrix of the infinite system of Egs, (3.18) depends neither on the load nor on the
region occupied by the plate, but is affected only by Poisson’s ratio, The form of the
matrix is the same as in the case of bending of a plate: the difference consists in the
values of the numbers §,. The system can be solved well by the method of truncation,
The same constructions are carried out for the third and higher approximations, At each
stage of approximation it is necessary to solve a two-dimensional Kolosov-Muskhelishvili
problem for the given region but for a different right-hand side, Moreover,the  a
must be determined from an infinite system of equations having the same matrix for all
the approximations,

4, Thus, we have for the boundary values of the functions which have been intro-

duced 9 (2) = Apy + A, + ..oy P (z) = My + A, -+
a, (s) = Alags + ..., fp (s) = ?\.2}‘,,2 + (4.1)

From this we finally obtain the following expressions for the suesses and displacements
17,. 8 - -, =, =
Op = '—3"‘2—[11-5;(@1- Pt 2@ — 2@ + Y1 — W) +

F:] - - - -
+m g @+ e + 200 + 290 + b+ 8|+

2 < a 3a?
AT (gt g — ) = )P0+ 8% (0) as) oxp - —

17, S — - -
—A‘z‘i“[l‘ais(%'“%“*‘Z‘Pa'—'z%'-l-‘ll’a—*‘l?e)%—
a -— — — -

+ G @+ 2@+ 2@ )|+

o]
2 1 3 302 n
ZE a2 2 2 .2 2 P
+= 2v E:l 2 €08 Pplpp 35 [jm(i 3R n+81{2 n:4 .. )] exp ;

+ 252 3 {[(v—1>pk(;>+éfaucn(i—é%na-é—%nw ) arg (5) +

k=1
+[*5 Lo+ @] (— g —rZ— el +

+ 20— )0 O (— g + gt Jam@)exp X 42)
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L. d T 8, =,
""nsz}"‘g"’[lm'ggf(%—@l*f“l% — 2@y Pr— Y1) — L1+ @ + 2 -+

gy P2 a2, \

+ 2o + P +1P1)J“"'-;-7wZcosppgppz(i_;ﬁn+%n.+“\j %
Pyl LA - - -, - ‘

Xfpg(s)exp——r + 2 “"2‘{_””‘%(‘332“?24-.2@2*.2(?2 -F e — Py —

3 — =, =, _ o

— Ut @ ko I )| A {,2 i (2) 7 O
9 34® §,.n

X g (1= g ot (o) exp =+

+v D) cos pPCUI — é%n + Sig—;nzw. . ) (—;;—"é‘fm “'ppgfiﬁ) +

pe=1
00 (fr— g — " gt ) I )] exp )

o 4.3
Tnz=g%lkiz,l?k@}ﬁk(1———-2%&-{—5’%;&2-{».“}%3{3)exp%—‘i-}- -
+ &2y {2 a0 [0 (1 gm + grant ) (6) +

Hdnf ot b o]
— §}1pp sin p,,@%%[(h—;ﬁn—{»%n?—. . .)fm (s)}exp f%w# . .{.4'4)
p—

Up = % M [% (@1 + Q1) — 201 — 29 — 1 — 1] — i [% [P — P1) —
— 2 + 7 — Y1 Wl + g M0 (e P)— 5P — 20 — $r— ] —
— mi [ (2 — @2) — 298" + 202’ — P2 + ]} +

+ A2 E‘, ay (L) O (1~-2%n+§%%nzu,..)am(s)exp§{i + ...
us = —2?57”:{;3 [ @1+ @) — 29 — 2" — P — 1] + Ui [% (1 — 1) —
— 2@t + 2 — P — i)} — ',;%V{m [ (@2 + @2) — 292" — 200 —
= @2 — bo] + L [% (@2 — @2) — 202" + 200" — P2 + Y]} —

@0 pn
- 2vA2 2 cospPCp,,(i——-z—%n—f—gg— 2-}—...}@,2(3) exp—?}i—- 4 ... (4.5)

=1
1 -1 ’ . 1 —1 ’ —~
WZ*TA‘EV”;—_—;@U% +¢1)——E—?y23\;_1a.’;(% + @) +

S 2 8, n
+ 22 3 3}:(@}(1"-2%” + %ne—k...)akz(s)exp—{—-;-,”

k=t
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As we move towards the interior of the region, the state of stress tends to one of bi-
harmonic type, but to one which is not described by the boundary conditions of the two-
dimensional state of stress, This latter is obtained as the first term in the expansion in
powers of A. St. Venant's principle as usually stated is not satisfied, since even far from
the boundary the state of stress does not coincide with the two-dimensional one,

In Egs, (4. 5) for the displacements the first terms on the right-hand side correspond
to the solution of the two-dimensional problem of the theory of elasticity, It follows
from this that the error in the determination of the displacements in the two-dimensional
problem will be of order A compared with unity.

Let us examine the values of the stresses on the boundary 7= 0

60 = — L [l (5 — 591’ +Tr—a) -+ B+ F 2+

B A Plmo 22 A D 1 —1) i () + 8% (©)] @i (§) —
. k=1
— %’j’% (& (e — 62 -+ Z(Ez' ——Z(P2' + l_Pz — P2) 4 m (@ *}‘.62 + E(Pz' + 262’ +=

%+ V)] oo + 22 22 {2v ) 0y 008 oyl + 2 16— 1) pe (D) +
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Near the edge additional terms appear in Eqs, (4.6) and (4, 7) which are of the same
order in A as the solution of the two-dimensional problem, In the swess 7,, for small
A the additional terms play the basic role (cf, [3]). Therefore, as in plate bending, the
estimation of the state of stress on the boundary from the engineering theory must be app-
roached carefully, The problem of stress concentration should be examined separately,
A numerical investigation of the state of stress in plates has been performed in a num-
ber of cases on the basis of the theory presented here, Although numerical data were
provided for 50 boundary layers, the accuracy necessary for practical purposes was attain-
ed when 10 boundary layers were used,
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